Influence of Valve Lift Timing on Producer Gas Combustion and Its Modeling Using Two-Stage Wiebe Function
نویسندگان
چکیده
Abstract—Producer gas is a biomass derived gaseous fuel which is extensively used in internal combustion engines for power generation application. Unlike the conventional hydrocarbon fuels (Gasoline and Natural gas), the combustion properties of producer gas fuel are much different. Therefore, setting of optimal spark time for efficient engine operation is required. Owing to the fluctuating tendency of producer gas composition during gasification process, the heat release patterns (dictating the power output and emissions) obtained are quite different from conventional fuels. It was found that, valve lift timing is yet another factor which influences the burn rate of producer gas fuel, and thus, the heat release rate of the engine. Therefore, the present study was motivated to estimate the influence of valve lift timing analytically (Wiebe model) on the burn rate of producer gas through curve fitting against experimentally obtained mass fraction burn curves of several producer gas compositions. Furthermore, Wiebe models are widely used in zero-dimensional codes for engine parametric studies and are quite popular. This study also addresses the influence of hydrogen and methane concentration of producer gas on combustion trends, which are known to cause dynamics in engine combustion.
منابع مشابه
The Effect of Valve Lift on In-Cylinder Flow, Performance and Emissions in a Turbocharged DI Diesel Engine
A computational optimization was performed for a direct-injection diesel engine using three-dimensional modeling. Fully transient CFD analyses of different valve profile strategies for the intake and compression strokes were performed to evaluate the effects on both engine performance and in-cylinder flow-field evolution. The turbulence model was used along with the second order linear upwin...
متن کاملDeveloping a Novel Temperature Model in Gas Lifted Wells to Enhance the Gas Lift Design
In the continuous gas lift operation, compressed gas is injected into the lower section of tubing through annulus. The produced liquid flow rate is a function of gas injection rate and injection depth. All the equations to determine depth of injection assumes constant density for gas based on an average temperature of surface and bottomhole that decreases the accuracy of gas lift design. Also g...
متن کاملReformer Gas Application in Combustion Onset Control of HCCI Engine
Homogenous charge compression ignition (HCCI) combustion is spontaneous multi-site combustion of a nominally premixed air/fuel mixture that exhibits high rate of pressure rise and short combustion duration. To avoid excessive pressure rise rate and knocking, HCCI engines are fueled with highly diluted mixture using a combination of excess air and/or EGR. HCCI combustion is attractive due to ...
متن کاملOptimizing and Stabilizing the Gas Lift Operation by Controlling the Lift Gas Specific Gravity
One of the factors which affects the gas lift performance is specific gravity of a lift gas (or the Molecular weight), which can influence the gas solubility in oil and has a direct effect on the gas lift performance. There are some previous researches which have included the lift gas specific gravity in their modeling, but in none of them, a comprehensive research about the effect of lift gas ...
متن کاملEffect of Contact Pressure and Frequency on Contact Heat Transfer Between Exhaust Valve and its Seat
The hot gases produced by the internal combustion engines passes through the exhaust valve and causes high temperatures in the exhaust valve and its seat. To avoid damaging the exhaust valve, heat must be transferred from the valve to its seat during the contact they make at the opening and closing cycle. Heat transfer rate from the exhaust valve to its seat is a function of many factors. One o...
متن کامل